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Abstract: In this paper we studied the dynamics of one ammensal and two mutualistic 

species. A distributed time lag is induced in the interaction of ammensal and the second 

mutual species. Local and global stability analysis is discussed at co-existing state. 

Numerical simulation with different delay kernel strengths are illustrated and proved that 

delay kernels have no impact in the population dynamics of two mutual species. 
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1. INTRODUCTION 

 

The research in ecology using mathematical tools like differential equations plays a 

vital role in stability analysis of eco systems. Ecological interactions may be classified 

like prey-predation, competition ammensalism, commensalism, and mutualism etc. 

Sometimes the models arise from the combination of two or three classifications.Research 

in this discipline was initiated by Lokta[1] and Voltera [2]. Stability analysis of ecological 

systems were widely discussed by May [3] , Freedman [5] and Kapur [6,7].  

 

One of such situation is discussed in this paper and studied the dynamics of the model 

with one ammensal and two mutual species. In ammesalism one has adverse effect with 

other living being. Ammesal will not get any benefit or loss while others will get negative 

effect. We also induced a distributed time lag in the interaction of ammensal and the first 

mutualistic species. Delays are common in ecological systems. Distributed time lags are 

more appropriate to use in ecological systems. Ecological interaction with distributed lags 

are explained by Cushing [4], Sreeharirao[15] and yang[16]. Lakshmi Narayan et.al 

[9]studied three species model with prey, predator and ammensalmodels. Kondalarao [8] 

discussed a three specie dynamical system of ammensal relationship of humans on plants 

and birds with time delay. Distributed type time delay models with prey, predator and 

competitor models were discussed by Paparao [11,13,14]. Distributed type of delay in 
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three species ammensalism model was dealt by Paparao [12]. In continuation with we 

proposed an ecological model with one ammensal and two mutual helping species. A 

distributed type delay is induced in the interaction of ammensal and second   mutual 

species. The dynamics of the model studied with different delay kernel strengths and 

observed that delay arguments has no impact in the population strengths of two mutual 

species when no delay arguments are included. So the delay arguments are not significant 

in the population dynamics of the two mutual species population.  

 

2. Mathematical Model 

The mathematical model equations for the proposed model(logistic growth model) with 
distributed time lag in the interaction of ammensal and the second mutual species is given 
by the following equations.  

��

��
= ��� �1 −

�

��
�  

��

��
= ��� �1 −

�

��
� − ����� + �����      

 (2.1) 
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Where  
x- is the Ammensal population, 
y & z are the mutualistic species populations, 
��, �� ��� �� are the natural growth rate of the ammensal and mutualistc species, 

3121 & are the rate of decay of mutualistic species due to attacks of ammensal species. 

3223 & are the rate of growth of mutulistic species due to helping one each other. 

��, �� ��� �� are the carrying capacities of the ammensal and mutualistic species. 
 

Further the variables x, y, and z are non-negative and the model parameters 

��, �� , ��, ���, ���, ���and ���are assumed to be non negative constants.                                

Let us take 
��

��
= ��,
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��
= ��,
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Put t-u = s  , we get the following system of equations 
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Choose the kernel w such that  
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∫ �(�)��
�

�
= �, ∫ ��(�)��

�

�
< ∞,      (2.3) 

 

3. Equilibrium Point: 

The system under investigation, eight equilibrium points are identified. Out of these 
we studied only on co-existing state which is given by 

�̅ = ��  

�� =
��(������������)�(����������)

(�����������)
     (3.1) 

�̅ =
��(������������)�(����������)

(�����������)
   

This state would exist only when 

���(������ + �����) > (����� + ����)�, ��(����� + ������) > (���� +

�����)) ��� (������ − ����) > 0                                                              (3.2) 

 

4. Stability of the Co-existing State: 

Theorem:The co-existing state E ),,( zyx is locally asymptotically stableIf �� �� >

��� ��� 

Proof: Let the variational matrix is givenby 

         

� = �

−��x� 0 0
−���y� −��y� ���y�

−����̅w(s) ���z� −��z�
�     

 (4.1) 

The characteristic equation of the system is|�� − �| = 0      

=> �� + ���� +  � �� + �� = 0       

 (4.2) 

Where�� =  ��x� + ��y�  + k�z� > 0, 

�� =  k� ��x�y� + k�k�x�z� + k� ��y�z� −  ��� ���y�z� 

=> �� =  k� ��x�y� + k�k�x�z� + (k� �� −  ��� ���)y�z�   and  

�� =  k�x�( �� ��y�z� −  ��� ���y�z�) => �� =  k�x�y�z�( �� �� − ��� ���) 

 ���� − �� = (��x� + ��y�  + k�z�)(k� ��x�y� +  k�k�x�z� + (k� �� − ��� ���)y�z�) −

k�x�y�z�( �� �� −  ��� ���) 

 ���� − �� = (��x� + ��y�  + k�z�)(k� ��x�y� +  k�k�x�z�) + ( ��y�  + k�z�)(k� �� −

 ��� ���)y�z� 

 ���� − �� > 0 if  k� �� > ������       and  

ISSN NO: 1934-7197

Page No: 51

Journal of Engineering, Computing and Architecture

Volume 10, Issue 4, 2020



 ��(���� − ��) = k�x�y�z�( �� �� − ��� ���)((��x� + ��y�  + k�z�)(k� ��x�y� +  k�k�x�z�) +

( ��y�  + k�z�)(k� �� − ��� ���)y�z� ) 

Which is positive if   �� �� > ��� ��� 

We have  �� > 0 , (���� − ��) > 0 and  ��(���� − ��) > 0 if   �� �� > ��� ��� 

    Therefore  by Routh – Hurwitz criteria, the system is Asymptotically stable 

 if  �� �� > ��� ��� 

Hence the co-existing state (�̅, �,� �̅) is locally asymptotically stable if �� �� > ��� ��� 

 
5. Global Stability: 

Statement: The co-existing state is globally asymptotically stable. 

Proof: Let us choose  theLyapunov’s  function  

�(�̅, y�, z�) = �� − �̅ − �̅ln �
�

�̅
�� + �� − �� − ��ln �

�

��
�� + �� − �̅ − �̅ln �

�
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��   

 (5.1) 

Here 0,0,0  zyx  

Differentiate (5.1) with respect to‘t’, we get 
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Choosing 1 2 2 21 23 3 2 31 32

0

, , ( ) ( ) .a k x a k y x z a k z w s x t s ds y   


          

= −k�(x − x�)� + (y − y�)[−α��(x − x�) − k�(y − y�)] + (z − z�)[−α��(x − x�) −

k�(z − z�)]          

= −k�(x − x�)� − k�(y − y�)� − k�(z − z�)� − α��(x − x�)(y − y�) − α��(x − x�)(z − z�) 

                                                                                                                                         (5.5) 

Using the basic inequality 
2

22 ba
ab
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= −k�(x − x�)� − k�(y − y�)� − k�(z − z�)� −
α��

�
[(x − x�)� + (y − y�)�] −

α��

�
[(x − x�)� +

(z − z�)�]           
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α��
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�
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α��

�
]  (5.7) 

0
dt

dV
           

 (5.8) 

Hence the Normal steady state is globally asymptotically stable. 

6. Numerical Examples: 

S.No          Figures Description 
1 The figures(A)   Shows the variation of x, y and z with respect to Time (t)  
2 The figures(B)   The phase portrait of x, y and z 

 
Example 6.1:a1 =0.2; a2 =0.5; a3 =0.2; ���=0.05; ���=0.05;���=0.05;���=0.05;c1 

=50;c2=50; c3 =50,x=10, y=5, z=2.  

The system is asymptotically stable to E(60, 97,86) when no delay arguments are 

induced . 

 
  Figure:6. 1(A)           Figure: 6.1(B) 

With the kernels as follows �(�) =  �����  ���  � > 0, and the Laplace transform of  

�(�) is defined as �(�) = ∫ �����
�

�
������ =

�

���
 

 
The results are simulated for the above system of equations (2.2) Using MAT LAB 

simulation.With the parameters shown in Example 6. 1 with different kernel values are 
plotted below. 

1. a=0.1; �=2;  (60, 97, 86) 
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  Figure:6. 1.1(A)   Figure: 6.1.1(B) 

The system is asymptotically stable to E(60, 97,86) . No significant growth is 
observed in two mutual species.   

2. a=0.1; �=0.2;  (60,97,86) 

 
Figure:6. 1.2(A)         Figure: 6.1.2(B) 

The system is asymptotically stable to E(60, 97,86) . No significant growth is 
observed in two mutual species.   

3. a=1; �=0.2;  (60, 9786) 

 
Figure:6. 1.3(A)         Figure: 6.1.3(B) 

The system is asymptotically stable to E(60, 97,86) . No significant growth is 
observed in two mutual species.   

4. a=1; �=2;  (60, 97, 86) 
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  Figure:6. 1.4(A)          Figure: 6.1.4(B) 

The system is asymptotically stable to E(60, 97,86) . No significant growth is 
observed in two mutual species.   

Example 6. 2:a1 =1; a2 =2; a3 =3;���=0.05; ���=0.03;���=0.05;���=0.03; 
c1 =25;c2 =25; c3 =25,      x=20, y=20, z=20.   

 
Figure:6.2(A)          Figure: 6.2(B) 

The system is stableto E (60, 97, 86) when no delay arguments are induced. 

When delay is induced with different values of   λ and a  isgiven below. 

1. a=0.1; �=2;  (60, 97,86) 

 
  Figure:6.2.1(A)          Figure: 6.2.1(B) 
 
System is stable toE(60, 97.06, 86.21). No Significant growth is observed in two 
mutual species when compare with no delay argument.  
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2. a=0.1; �=0.2;  (60,97.06,86.21) 

 
 

Figure:6.2.2(A)     Figure: 6.2.2(B) 

System is stable to E(60, 97 , 86). No significant growth is observed in first and 
second mutual species.  
 
3. a=1; �=0.2;  (60, 97, 86) 

 
 Figure:6.2.3(A)      Figure: 6.2.3(B) 

 
System is stable to E(60, 97, 86). No significant growth is observed in first and 
second mutual species when compare with no delay argument in the system. 
 
 
4. a=1; �=2;  (60, 97, 86) 

 
  Figure:6.2.4(A)      Figure: 6.2.4(B) 
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System is stable to E(60, 97, 86). No Significant growth is observed in first and 
second mutual species when compare with no delay argument in the sytem.  

Example :6.3a1 =5; a2 =6; a3 =7; ���=0.5; ���=0.5;���=0.5;���=0.5;c1=60;c2=60; c3 
=60; x=50, y=50, z=50.  

 
  Figure:6.3(A)          Figure: 6.3(B) 

 
System is stable to E(60, 97, 86) when no delay arguments are induced in the 
system 

 

1  a=0.1; �=2;  (60, 97, 86) 

 
  Figure:6.3.1(A)          Figure: 6.3.1(B) 

 
System is stable to E(60, 97, 86). No significant growth is observed in first and 
second mutual species when compare with no delay argument.  

2. a=0.1; �=0.2;  (60, 97, 86) 

 
Figure:6.3.2(A)      Figure: 6.3.2(B) 
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System is  stable to E(60, 97 , 86). No significant growth is observed in first and 
second mutual species when compare with no delay argument.  

 
3. a=1; �=0.2;  (60, 97, 86) 

 
 

 Figure:6.3.3(A)       Figure: 6.3.3(B) 

System is stable to E(60, 97, 86). No significant growth is observed in first and 
second mutual species when compare with no delay argument.  
 

4. a=1; �=2;  (60, 97, 86) 

 
  Figure:6.3.4(A)           Figure: 6.3.4(B) 

 
System is  stable to E(60, 97, 86). No Significant growth is observed in first and 
second mutual species when compare with no delay argument.  
 

7. Conclusion: 

 We consider a three species ecological model in which the ammensal and 

two mutualistic species.The distributed time lag is induced in the interaction of 

ammensal and the second mutual species.  The co-existing state is identified and 

studied the local stability analysis at this point and shown that the system is 

asymptotically stable if  �� �� > ��� ���  .The global stability is studied by 

lyapunov’s function. The dynamics of the system is studied using numerical 

simulation in support of stability analysis. We consider three numerical examples 

with delay and without delay arguments. The impact of delay with different 
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kernel strength is studied and observed that the systemis stable and delay 

arguments have no significant role in system dynamics. The population strengths 

when compared with no delay arguments are unchanged. So the delay arguments 

have no impact in the population of two mutually helping species. 
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